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Fig. 1. We present MegaSurf, an efficient and robust neural surface reconstruction framework to reconstruct the 3D large-scale scene from thousands of
input RGB images collected by the drone. MegaSurf has both the robustness of the stereo matching and the high-fidelity details of the rendering-based
reconstruction methods.

Neural surface reconstruction (NSR) has been shown to have huge poten-
tial for 3D reconstruction from multiview images. However, current NSR
methods struggle to reconstruct high-quality surfaces due to severe shape-
radiance ambiguities when they meet the large-scale scenes captured from
aircraft or UAVs, which often contain heavy shadows, illumination variations,
and low texture areas. We present MegaSurf, which efficiently and robustly
integrates Multiview Stereo (MVS) priors to solve large geometric errors due
to the intrinsic shape-radiance ambiguity while preserving high-precision
details. Specifically, we propose a lightweight MVS module to rapidly diffuse
high-confidence planar geometric information from structure-from-motion
(SFM) points, where ambiguities often occur, to guide the NSR. Further, we
propose a two-stage sampling-guided NSR approach. We pre-train a sam-
pling proposal network using MVS priors to indicate the next stage sampling
position and let these positions represent the scene first at the next stage
of training. This strategy helps to overcome large geometric errors due to
ambiguity while preserving the high-fidelity details. Our MegaSurf improves
the speed of prior acquisition by more than four times that of the SOTA
MVS methods and achieves the best reconstruction accuracy on large-scale
datasets compared to previous methods.

CCS Concepts: • Computing methodologies → Reconstruction.

Additional Key Words and Phrases: Neural Surface Reconstruction, Large
Scale Scenes, Multiview Reconstruction

1 INTRODUCTION
With airborne oblique imaging, large-scale 3D surface reconstruc-
tion has shown tremendous value in urban planning, virtual re-
ality, and navigation. In recent decades, multiview stereo match-
ing [4, 13, 24] has been widely used for large-scale reconstruction.
Due to the nature of window-based photo-consistency matching,
it is hard to reconstruct fine structures. Recently, neural surface
reconstruction (NSR) [8, 18, 26, 27], extended from neural radiance
field (NeRF) [10], have significantly promoted the development of
surface reconstruction concerning their reconstruction of high fi-
delity details on small objects or scenes, which conventional MVS
methods can hardly achieve. Although NeRF has attempted to apply
on the large-scale datasets for novel view synthesis [15, 16, 22, 23],
the researches on NSR are limited. Only some works [6, 8] extend
the hash table-based NSR approach to limited-scale outdoor scenes
since traditional MLP-based methods usually oversmooth the out-
door scenes.

NSR methods employ loss between rendered color and the input
image to back-propagate updates for the scene geometry, current
NSR methods face a severe shape-radiance ambiguity [3, 19, 29]
which would cause large reconstruction defects. Especially in air-
borne scenes, the ambiguity often occurs in regions like low textures,
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heavy shadows, and high illumination variance. Instead, conven-
tional MVS methods use a direct and more robust stereo-matching
approach for surface reconstruction and further employ matching
cost aggregation strategies [7, 13, 25] to improve the quality in these
difficult regions. Therefore, using multi-view geometric informa-
tion as a prior to guiding the optimization of NSR [19, 29] has been
proved to be a simple and effective strategy.

As for prior acquisition in large-scale scenes, PatchMatch stereo
matching methods [13, 24] are the good choice due to their scalabil-
ity and robust performance. However, these methods require high
computations on several global PatchMatch sweeps and a depth
fusion to improve the completeness and fine structure reconstruc-
tion, which is redundant when fusing into an NSR pipeline, where
NSR often performs better. This computational overhead cannot
be ignored in large scenes as it scales with the number of images
captured. [2, 3] introduce a local photo-consistency loss into NSR
without large computations on PatchMatch global optimization,
which does not perform well in textureless and shadow regions
where shape-radiance ambiguity often occurs.

Although the intensive MVS computations are performed, the
direct use of the priors to design a geometric loss[19, 29, 32] would
also inevitably introduce noises to degrade high-precision details
reconstruction from NSR methods. Confidence values of the geomet-
ric priors can be introduced to mitigate the effects of noises. Wei et
al. [20] guide the sampling near geometric priors while using confi-
dence to define the sampling range. However, the confidence of MVS
prior is often difficult to quantify, and how to use the confidence to
control the strength of sampling guidance is often case-dependent.
In this paper, we proposeMegaSurf to overcome the large geo-

metric error resulting from severe shape-radiance ambiguities while
preserving the highly detailed structures in large-scale scenes (Fig.
1). MegaSurf adopts the basic Neuralangelo [8] training strategy for
reconstructing high detailed structures. We then present a two-step
training strategy to use MVS geometric priors to guide NSR effi-
ciently and robustly: 1) We propose a lightweight PatchMatch MVS
module focusing on extracting high confident planar geometries
propagated from SFM points where large shape-radiance ambiguity
more likely occur. Instead of sweeping several times through all
pixels globally from random geometry initialization [13, 24], our
local propagation strategy lets every pixel receive the geometric
candidates propagated from neighboring high confident SFM points
when the pixel is calculated. Each pixel is only calculated once if
the pixel is in a planar geometry similar to SFM points. The other
regions, like the small details and trees, are reconstructed mainly
relying on NSR. 2)We propose a two-stage sampling guided training
approach to integrate geometric priors to NSR instead of directly
adding geometric loss into NSR optimization. In the first stage, we
train a cascaded proposal net using geometric priors, which natu-
rally transforms geometric priors into the sampling priors of NSR. In
the second phase, we train the rendering net using the well-trained
proposal net to control the sampling position while conducting a
non-occupancy loss to prevent the correct prior information learned
by the proposal net from being destroyed by the shape radiance
ambiguity.
In summary, our main contributions are the following:

•We present a lightweight MVS module to efficiently obtain high-
confidence planar geometric priors over four times improvement in
speed where large shape-radiance ambiguities often occur.

• We present a two-stage sampling guided training to robustly
integrate geometric prior by pretraining a proposal net using the
geometric priors, which overcomes severe shape-radiance ambiguity
while preserving high-fidelity details.

•Ourmethod outperforms previous SOTANSR andMVSmethods
on several large scene airborne datasets.

2 RELATED WORK
Multiview stereo matching.Multiview Stereo methods rely on
the photo-consistency matching among multiview images to esti-
mate depth maps, which are used to fuse into dense point clouds.
The performance of local photo-consistency matching is easily re-
duced in regions with low textures, shadows, and non-Lambertian
materials. Several global matching aggregation methods are ap-
plied to improve these regions’ reconstruction quality, including
semi-global optimization [7], PatchMatch [13], and 3D convolution
regularization [25]. Among all the MVS methods, Patchmatch-based
MVS methods [13, 24], with their efficient parallelization structure
and robust performance, are more suitable and knowledgeable for
large-scale scene reconstruction. Even though the learning-based
MVS methods [5, 25, 30] show their advantages of reconstruction in
difficult regions, their application on large-scale airborne datasets is
limited due to the lack of various 3D training sets, which are often
expensive to acquire.

Neural surface reconstruction. Recently, rendering-based neu-
ral surface reconstruction methods [18, 26, 27] have become a
promising way to promote the development of 3D reconstruction
due to their high-quality reconstruction results especially on ac-
curate details. The multi-resolution hash encoding [11] provides
a compact high-resolution feature representation to promote the
training speed and show its potential for high-fidelity reconstruc-
tion for large scenes. Li et al [8] introduce a progressive training
on the multi-resolution hash encoding representation, and a nu-
merical calculation of normals, extending the high reconstruction
accuracy to large outdoor scenes. However, on large-scale scenes,
specially acquired from airborne equipment and under the non-
object-centric setting, large geometrical errors often occur due to
the shape-radiance ambiguity, which is deteriorated by the heavy
shadows, low textures, and illumination variations.

Geometric prior guided neural surface reconstruction. Geo-
metric prior guided NSR methods are well-studied in indoor scenes.
The intrinsic shape-radiance ambiguity is a serious problem for in-
door scene NSR due to the textureless walls, reflective windows, and
floors. In the indoor environment, geometry prior is often derived
from depth sensors[1], monodepth estimation networks [12, 21],
volumetric learning networks [14, 17] as MVS methods also fail
to reconstruct these geometries. These learning approaches to de-
rive geometric priors can only be applicable when the 3D training
sets are available. Instead of extracting explicit geometric priors,
several methods use local multiview photo-consistency [2, 3] to
improve the surface reconstruction for laboratory datasets where
the multiview images are well captured. To our knowledge, we can
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Fig. 2. Method overview. We propose a lightweight MVS module to rapidly propagate SFM points to obtain high-confidence geometry to guide the training of
NSR. Then, we propose a two-stage sampling guided training strategy using the geometric prior to alleviate the shape-radiance ambiguity while preserving
the details. Stage 1 only trains the proposal and geometry net to encourage sampling probability density function (PDF) concentrating on the space near
geometric priors. Stage 2 adds the rendering net and trains the whole structure. Besides, a non-occupancy loss is added to suppress the density between the
camera center and geometric priors.

not find any geometric prior guided NSR method applied for large
airborne datasets. One reason could be that MVS introduces a large
computational overhead which scales with huge number of images
captured in large scenes. We propose a lightweight MVS module
to reduce the computational overhead and integrate the module to
the NSR pipeline, while focusing on deriving high confident planar
geometries where large ambiguity issues are more likely to occur.
In addition, as most methods apply [6, 19, 29], simply adding geo-
metric loss between the prior and then estimate surface directly
introduces MVS noises to over smooth the detailed structures. The
same problem happens to the method of Zhang et al. [32], which
employs geometric prior to supervising zero-level set from NSR.
Wei et al. [20] restrain the sampling near geometric priors while
defining their confidence to define the sampling range around the
prior to deal with noises. However, our proposed sampling guided
approach by pretraining a proposal net, which lets the network itself
learn which prior to believing, thus is more robust to noises.

3 METHOD
As shown in Figure 2, Megasurf proposes a lightweight MVS module
to rapidly derive confident geometries to guide the place of NSR
where large shape-radiance ambiguities more likely occur. Then, a
two-stage sampling guided training approach using the geometric
priors is provided to improve the robustness of NSR to preserve
highly detailed structures when the inevitable noises are introduced
in the geometric priors.

3.1 Preliminary
Neural radiance field. By sampling 3D points from camera rays,
NeRF [10] employs coordinate MLP networks to learn the density
and color fields of the 3D scene. It uses volume rendering to su-
pervise the network, which integrates the color of sampled points
along the ray to render each pixel:

C (𝑟 ) =
∑︁
𝑖

𝜔𝑖c𝑖 , 𝜔𝑖 = 𝑻 𝑖𝛼𝑖 , (1)

where 𝛼𝑖 = 1 − exp (−𝜎𝑖𝛿𝑖 ) is the opacity of the segment 𝑖 , 𝜎𝑖 is
the density, 𝛿𝑖 = 𝑡𝑖 − 𝑡𝑖−1, and 𝑡 is the distance from sampling
points to the ray center. 𝑻 𝑖 =

∏𝑖−1
𝑗=1

(
1 − 𝜎 𝑗

)
is the accumulated

transmittance. As the geometry of NeRF is represented by density,
extracting surfaces from densities often leads to noisy results.
Neural surface reconstruction. Most NSR methods use SDF

as the geometric representation instead of density in NeRFs, as the
surface can be represented by the zero-level set of the signed distance
function (SDF), 𝑆 = {x : 𝑓 (x) = 0}. To use volume rendering,
VolSDF [26] defines the volume density function 𝜏 to map the signed
distance 𝑓 (𝑥) to volume density 𝜎 :

𝜏 (x) = 𝛽−1Ψ𝛽 (𝑓 (x)), (2)

where 𝛽 > 0 is a scheduling parameters and approaches 0 during
optimization,𝜏 (x) is the cumulative distribution funcion (CDF) of the
zero-mean Laplace distribution with scale 𝛽 . Manually controlling
the 𝛽 allows different reconstructed cases to have the same 𝛽 , so
that the surface details of different cases are consistent.
Neuralangelo. Recently, multi-resolution hash encoding pro-

posed by Muller et al. [11] is a compact feature representation that
can represent large-scale scenes in unprecedented detail. Neuralan-
gelo [8] designs a coarse-to-fine optimization scheme to reconstruct
the surfaces with progressive levels of detail:

𝛾𝑙 = [𝐹0, 𝐹1, ..., 𝐹𝑠𝑡𝑎𝑟𝑡+𝑙 ], 𝑙𝑠𝑡𝑎𝑟𝑡 < 𝑙 < 𝑙𝑚𝑎𝑥 , (3)

where 𝛾 represents the features from hash grids, 𝐹 is the features
of each level of hash grid, and the coarse to fine resolution spans
from level 𝑙𝑠𝑡𝑎𝑟𝑡 to level 𝑙𝑚𝑎𝑥 . Another important contribution is the
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design of a numerical gradient computation to distribute the back-
propagation updates to wider neighboring hash grids to improve
the smoothness of surface reconstruction:

∇𝑥 𝑓 (𝑥) =
𝑓 (𝛾 (𝑥 + 𝜖𝑥 )) − 𝑓 (𝛾 (𝑥 − 𝜖𝑥 ))

2𝜖
, (4)

where 𝜖 is the step size away from 𝑥 for sampling points to calculate
gradient numerically.

However, when applying it to large-scale airborne datasets, severe
shape radiance often happens in the areas of heavy shadows, low
textures, and illumination variations.

3.2 Lightweight PatchMatch MVS Module

(a) Images (b) SFM points (c) Confidence mask

Fig. 3. The illustration of the high-confidence region acquired by our light-
weight MVS module. (a) The input images. (b) Sparse SFM points. (c) The
high-confidence position which we used as the geometric prior during our
NSR training.

Prelimiary of heavy PatchMatch MVS module. Commonly
used PatchMatch MVS module starts from randomly initializing
geometry on each pixel, and every pixel uses PatchMatch opti-
mization to select the best geometric candidate with the smallest
photo-consistency loss 𝑬𝑁𝐶𝐶 from all the candidates propagated
from its neighboring pixels. The candidates are often chosen from
a window area, e.g. 11×11, centered in the pixel. Each pixel will
continuously update its geometry from neighbors until it receives
its accurate geometry. Due to the random initialization, pixels of-
ten require several global patch-matching optimizations to get the
accurate candidate to converge.

Lightweight local propagation from SFM points. Instead, we
start from high confident SFM points in each image as activate key
points 𝑝𝑎𝑐𝑡 to propagate the information to surrounding neighbors.
We randomly select eight neighboring pixels for each 𝑝𝑎𝑐𝑡 within a
11*11 pixel area as candidate key points 𝑝𝑐𝑎𝑛𝑑 . Next, we perform
PatchMatch operation on the 𝑝𝑐𝑎𝑛𝑑 and corresponding neighbor
pixels 𝑝𝑛𝑏𝑟 with a distance of 3 pixels. The 𝑝𝑐𝑎𝑛𝑑 become a new 𝑝𝑎𝑐𝑡
when they satisfy: 1) The depth difference between the 𝑝𝑐𝑎𝑛𝑑 and
corresponding 𝑝𝑎𝑐𝑡 is less than the given reconstruction accuracy.
2) The mean depth difference between the 𝑝𝑐𝑎𝑛𝑑 and its 𝑝𝑛𝑏𝑟 is less
than the given reconstruction accuracy. In this way, if the candidate
key point is in the similar plane with the SFM points, it will im-
mediately receive the accurate candidate which will be most likely
selected from all the candidates with a minimal photo-consistency
loss.

When the activated key point is determined, a 5*5 pixel neighbor
mask is generated. The area within the mask is not sampled, which
means no new key point is generated within the mask. This is not
only to mitigate the incorrect propagation to the outside of the plane
across the edge, but more importantly, increase the speed of propa-
gation. When no 𝑝𝑎𝑐𝑡 exists, we perform the PatchMatch operation
for all pixels that are not sampled. Finally, our MVS module outputs
a depth map with a mask indicating the high-confidence geometries
propagated from our approach. Note that we do not require a depth
fusion step to filter the depth noises, further indicating our high
efficiency.
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Fig. 4. The propagation strategy of our lightweight MVS module. The high-
confidence geometric information is progressively propagated to its sur-
rounding area.

3.3 Sampling-guided surface reconstruction
We propose a two-stage sampling-guided training approach. In
the first stage, we train the proposal net and foreground geometry
net to transform the prior geometries from our lightweight MVS
module to the sampling for largely reducing ambiguities. In the
second stage, we further design a non-occupancy loss using the
prior geometry to reduce the ambiguity between the camera center
and prior geometries when the rendering net is added for training.
Here, we first explain the sampling strategy for airborne scenes
combined with a proposal network.
Illustration of our sampling strategy using proposal net-

work. As our large airborne scenes are all unbounded cases, we
follow NeRF++ [31] to subdivide the scene into a foreground and
background region, which employs a uniform sampling and an
inverse distance sampling, respectively. We regard the minimum
bounding box of the region of interest as foreground and rescale
the space into a cube with a range of [−1, 1]. As the foreground
region does not cover our cameras in this way, we start our uniform
sampling within the foreground of each ray from the position where
the ray intersects with the cube.

After the initial sampling, we provide a cascade proposal net 𝑃𝑟𝑜𝑝 ,
which provides a two level hierarchical sampling procedure [10] to
sample finer queries more efficiently. Our proposal net adopts multi-
resolution hash encoding following a tiny MLP for more efficient
feature presentation. Compared to the occupancy grid proposed by
Muller et al. [11], our training approach has better stability for large
complex scenes.
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Fig. 5. Qualitative results on the Urbanscene3D dataset. MegaSurf both have the robustness to the severe shape-radiance ambiguity and preserve high-fidelity
details. The meshes in the first four columns use vertex normal as its vertex color.

Stage1: pretrain proposal net using geometric prior. Differ-
ent from previous work using the geometric prior to forming a depth
loss in NSR, we use geometric cues to pre-train the cascade pro-
posal net for better resistance to the geometric errors of these priors.

Due to the memory and computational efficiency, the proposal net
is designed with a limited resolution of hash encoding. Therefore,
we jointly pretrain the geometry net, which has a much higher
feature resolution, to best transform the dense geometric prior to
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the sampling in the NSR. We design a cascaded proposal loss for
each level of proposal net (often two levels, 𝑃𝑟𝑜𝑝0 and 𝑃𝑟𝑜𝑝1) and
the geometric net 𝑓𝑔 by maximize the sampling weights within the
range [𝑡𝑝𝑟𝑖𝑜𝑟 − 𝜖, 𝑡𝑝𝑟𝑖𝑜𝑟 + 𝜖] of all three sampling levels mentioned
above:

𝐿𝑝𝑟𝑜𝑝 =1 −
∑︁
𝑖∈Λ

𝜔ℎ
𝑖 ,

Λ : {𝑖 : 𝑡𝑝𝑟𝑖𝑜𝑟 − 𝜖 < 𝑡𝑖 <𝑡𝑝𝑟𝑖𝑜𝑟 + 𝜖}, ℎ ∈ 𝑃𝑟𝑜𝑝0, 𝑃𝑟𝑜𝑝1, 𝑓𝑔 .
(5)

We further add a curvature loss to improve the smoothness of
sampling to address the noise and incompleteness of the geometric
priors:

Lcurv =
1
𝑁

𝑁∑︁
𝑖=1

��∇2 𝑓 (x𝑖 )
�� , (6)

The overall loss designed at stage 1 is:

𝐿𝑠𝑡𝑎𝑔𝑒1 = 𝐿𝑐𝑢𝑟𝑣 + 𝐿𝑝𝑟𝑜𝑝 . (7)

Stage2: train rendering net with non-occupancy loss. When
adding the rendering net into the pipeline in stage 2, we propose a
non-occupancy loss to prevent sampling information carried by the
pretrained proposal net from being damaged. The non-occupancy
loss aims to limit the color contribution of the samples between
camera center and the geometric prior indicated position. Note that
there still leaves a large sampling space exceeding the prior position
for the rendering net to recover high details. As shown in Figure 2,
it is robust to the noise given by geometric priors, as the real surface
can still be sampled. The non-occupancy loss is:

𝐿𝑛𝑜𝑐𝑐 = | |
∑︁
𝑖∈Γ

𝜔𝑖𝑐𝑖 | |1,

Γ :{𝑖 : 𝑡𝑖 < 𝑡𝑝𝑟𝑖𝑜𝑟 − 𝜖},
(8)

Similar to Equation 5, we also add an epsilon buffer according to
accuracy of geometric priors.

Our MegaSurf also uses color, eikonal, and curvature loss as the
basic loss functions, as common NSR methods often adopt. There-
fore, the stage 2 training loss is defined as:

𝐿𝑠𝑡𝑎𝑔𝑒2 = 𝐿𝑐𝑜𝑙𝑜𝑟 + 𝐿𝑐𝑢𝑟𝑣 + 𝐿𝑒𝑖𝑘𝑜𝑛𝑎𝑙 + 𝐿𝑛𝑜𝑐𝑐 . (9)

4 EXPERIMENTS

4.1 Experimental Setup
Baselines. Our experiments are conducted on Urbanscene3D [9]
dataset and the Songshanhu which is collected by our drone. Their
areas are between 60000𝑚2 (300𝑚 × 200𝑚) and 150000𝑚2 (300𝑚 ×
500𝑚). We divided the whole scenes into several blocks and each
block covers a 150m x 150m ground region. We compare Mega-
Surf with ACMH [24], a traditional reconstruction method, and
two NSR methods: Bakedangelo [28] and Monoangelo. Bakedangelo
combines BakedSDF [27] with Neuralangelo [8] settings and has a
better background modeling, which is more efficient than Neuralan-
gelo. We migrate the key ideas of MonoSDF [29] to Bakedangelo
which called Monoangelo, as the results obtained by MonoSDF are
generally oversmooth.

Training and evaluation. We train MegaSurf for 200k itera-
tions per block. The memory consumption is about 22G. After NSR
training, we extract the mesh from the SDF by Marching Cube. We
compared the reconstruction results of SciArt and Polytech with
the LiDAR ground truth following the official evaluation protocol.
It is worth noting that because only the main building has LiDAR
information, the result of the numerical comparison is only used to
measure the reconstruction quality of the building in the scene.

4.2 Comparisons
We developed our lightweight MVS module on ACMH software
[24], which claims the equal quality, but three time speed than
another popular open source software, COLMAP [13]. We project
the high-confidence geometric prior obtained by our lightweight
MVS module to the space to form a point cloud and compare it with
ACMH.

Table 1. Quantitative results of generating the priors of our lightweight
MVS module vs ACMH.

Method 𝐴𝑐𝑐50 ↓ 𝐶𝑜𝑚𝑝50 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙50 ↓ 𝐴𝑐𝑐95 ↓ 𝐶𝑜𝑚𝑝95 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙95 ↓
Artsci
ACMH 0.1566 0.1432 0.1499 0.2035 0.3663 0.2849
Ours 0.1629 0.1320 0.1475 0.2010 0.3832 0.2921

Polytech
ACMH 0.1021 0.1043 0.1032 0.1701 0.2300 0.2000
Ours 0.1227 0.1218 0.1222 0.1937 0.2704 0.2320

Table 1 shows that our lightweight MVS module is comparable
to ACMH. Only in the PolyTech dataset, our method may has less
detailed structures. However, our method is more than four times
faster than ACMH when only the PatchMatch step is counted (2).
This matches the configuration of ACMH, which applies four times
PatchMatch global sweeps on each pixel. Furthermore, ACMH re-
quires a depth fusion step to filter noisy geometries for the final
geometric prior. This step is extremely slow when a large number
of images are applied due to their naive implementation, which is
not counted in our table. Note that we do not need this fusion step
and can also get comparable geometries.

Table 2. The time consumption for generating the priors of our lightweight
MVS module vs ACMH.

Residence SciArt PolyTech Songshanhu

Image number 2581 3091 2508 738
Image size 1216×912 1216×912 1500×1000 1368×768
ACMH PatchMatch time 5891s 7274s 7641s 1200s
Ours 1133s 1357s 1460s 291s

We provide qualitative and quantitative comparisons to evaluate
the performance of our method. Fig 5 and Table 3 shows the results
respectively.
Bakedangelo can generate realistic details, but it suffers inher-

ent shape-radiance ambiguity, often leading to incorrect geometry.
Traditional methods such as ACMH are stable in large scene re-
construction. However, due to the large amount of noise in point
clouds, the triangulation may incorrectly connect the points and
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Fig. 6. Visualization results of the ablation study.

cause over-smoothing. Monoangelo takes depth priors as a regular
term to guide the NSR optimization. The depth provided by MVS
can help Monoangelo overcome shape-radiance ambiguity, but the
noise in priors makes it difficult to reconstruct the fine geometric
details. MegaSurf uses priors to train a cascade proposal net to guide
the sampling position of the stage 2 of NSR optimization. The well-
trained proposal net helps the NSR to use the position provided by
the prior to representing the scene, thereby helping to overcome
the ambiguity. At the same time, the information containing noise
is not transferred to the second optimization stage, thus preventing
damage to the accurate detail reconstruction. MegaSurf achieves
SOTA results on the Urbanscene3D dataset.

Table 3. Quantitative evaluation of reconstruction with existing methods
on the Urbanscene3D dataset. 𝐴𝑐𝑐50 represents the average of the first 50%
accuracy, 𝐶𝑜𝑚𝑝50 represents the average of the first 50% completeness,
𝑂𝑣𝑒𝑟𝑎𝑙𝑙50 represents the mean value of 𝐴𝑐𝑐50 and𝐶𝑜𝑚𝑝50. The same for
the others. MegaSurf achieves the best surface reconstruction performance.

Method 𝐴𝑐𝑐50 ↓ 𝐶𝑜𝑚𝑝50 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙50 ↓ 𝐴𝑐𝑐95 ↓ 𝐶𝑜𝑚𝑝95 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙95 ↓
Artsci
ACMH 0.1261 0.1122 0.1192 0.2958 0.5136 0.4047
Bakedangelo 0.1294 0.1147 0.1221 0.3319 0.5813 0.4566
Monoangelo 0.1380 0.1313 0.1347 0.3778 0.6152 0.4965
Ours 0.1237 0.1052 0.1145 0.2990 0.4138 0.3564

Polytech
ACMH 0.0640 0.0874 0.0757 0.1588 0.2499 0.2044
Bakedangelo 0.1054 0.0954 0.1004 0.2989 0.3969 0.3479
Monoangelo 0.0686 0.0620 0.0653 0.1810 0.2472 0.2141
Ours 0.0729 0.0646 0.0688 0.1763 0.2086 0.1925

4.3 Ablations
We perform ablation experiments over several MegaSurf training
strategies. The experiment was conducted on Urbanscene3D. The
qualitative and quantitative evaluation results are shown in Fig 6
and Table 3, respectively.
Proposal net.We freeze the parameters of the proposal net (Freeze
𝑃𝑟𝑜𝑝) after stage 1 training. When the parameters of the proposal
net are not affected by the rendering loss of stage 2, we found that
the ambiguity is somewhat alleviated. Because the sampling position
cannot change during the optimization, sample points are difficult

to focus around the real surface for finer reconstruction, resulting
in over-smoothing.
Occupancy loss. 𝐿𝑛𝑜𝑐𝑐 is designed to prevent the new surface from
appearing in areas where 𝜎 should be smaller according to the reli-
able prior information when we take rendering loss at optimization
stage 2. When 𝐿𝑛𝑜𝑜𝑐 is removed, the scene accuracy increases, but
the completeness decreases. From the visualization results, we can
see that the scene has some raised surfaces.

Table 4. Quantitative results of the ablation study on the Urbanscene3D
dataset.

Method 𝐴𝑐𝑐50 ↓ 𝐶𝑜𝑚𝑝50 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙50 ↓ 𝐴𝑐𝑐95 ↓ 𝐶𝑜𝑚𝑝95 ↓ 𝑂𝑣𝑒𝑟𝑎𝑙𝑙95 ↓
Artsci
Base 0.1294 0.1147 0.1221 0.3319 0.5813 0.4566
Freeze 𝑃𝑟𝑜𝑝 0.1486 0.1546 0.1516 0.3736 0.6982 0.5359
No 𝐿𝑛𝑜𝑐𝑐 0.1220 0.1058 0.1139 0.2980 0.4649 0.3815
Full 0.1237 0.1052 0.1145 0.2990 0.4138 0.3564

Polytech
Base 0.1054 0.0954 0.1004 0.2989 0.3969 0.3479
Freeze 𝑃𝑟𝑜𝑝 0.0794 0.0734 0.0764 0.2218 0.3182 0.2700
No 𝐿𝑛𝑜𝑐𝑐 0.0693 0.0608 0.0651 0.1749 0.2120 0.1935
Full 0.0729 0.0646 0.0688 0.1763 0.2086 0.1925

4.4 Conclusion
We introduce MegaSurf, a prior guided neural surface reconstruc-
tion approach for reconstructing large-scale scenes. We propose a
lightweight MVS module to progressively propagate the SFM infor-
mation to its surrounding area to obtain high-confidence geometric
prior, which is proven to be more than four times faster than the
SOTAmethod. Then, we propose a two-stage sampling-guided train-
ing strategy. In the first stage, we pre-train a sampling proposal net
using the priors to indicate the next stage sampling position, which
helps to overcome the large geometric errors from ambiguity. In
the second stage, we train the rendering net to restore the high-
fidelity details while conducting a non-occupancy loss to prevent
the correct prior information learned by the proposal net from be-
ing destroyed. Experiments on large-scale scene datasets show our
SOTA performance.
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